Regulation of ceramide synthase-mediated crypt epithelium apoptosis by DNA damage repair enzymes.

نویسندگان

  • Jimmy A Rotolo
  • Judith Mesicek
  • Jerzy Maj
  • Jean-Philip Truman
  • Adriana Haimovitz-Friedman
  • Richard Kolesnick
  • Zvi Fuks
چکیده

Acute endothelial cell apoptosis and microvascular compromise couple gastrointestinal tract irradiation to reproductive death of intestinal crypt stem cell clonogens (SCCs) following high-dose radiation. Genetic or pharmacologic inhibition of endothelial apoptosis prevents intestinal damage, but as the radiation dose is escalated, SCCs become directly susceptible to an alternate cell death mechanism, mediated via ceramide synthase (CS)-stimulated de novo synthesis of the proapoptotic sphingolipid ceramide, and p53-independent apoptosis of crypt SCCs. We previously reported that ataxia-telangiectasia mutated deficiency resets the primary radiation lethal pathway, allowing CS-mediated apoptosis at the low-dose range of radiation. The mechanism for this event, termed target reordering, remains unknown. Here, we show that inactivation of DNA damage repair pathways signals CS-mediated apoptosis in crypt SCCs, presumably via persistent unrepaired DNA double-strand breaks (DSBs). Genetic loss of function of sensors and transducers of DNA DSB repair confers the CS-mediated lethal pathway in intestines of sv129/B6Mre11(ATLD1/ATLD1) and C57BL/6(Prkdc/SCID) (severe combined immunodeficient) mice exposed to low-dose radiation. In contrast, CS-mediated SCC lethality was mitigated in irradiated gain-of-function Rad50(s/s) mice, and epistasis studies order Rad50 upstream of Mre11. These studies suggest unrepaired DNA DSBs as causative in target reordering in intestinal SCCs. As such, we provide an in vivo model of DNA damage repair that is standardized, can be exploited to understand allele-specific regulation in intact tissue, and is pharmacologically tractable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dietary soy protein inhibits DNA damage and cell survival of colon epithelial cells through attenuated expression of fatty acid synthase.

Dietary intake of soy protein decreases tumor incidence in rat models of chemically induced colon cancer. We hypothesized that decreased expression of fatty acid synthase (FASN) underlies, in part, the tumor-preventive effects of soy protein, since FASN overexpression characterizes early tumorigenesis. Here, we show that colonic FASN levels are reduced with dietary intake of soy protein isolate...

متن کامل

New Aspects of Silibinin Stereoisomers and their 3-O-galloyl Derivatives on Cytotoxicity and Ceramide Metabolism in Hep G2 hepatocarcinoma Cell Line

Ceramide as a second messenger is a key regulator in apoptosis and cytotoxicity. Ceramide-metabolizing enzymes are ideal target in cancer chemo-preventive studies. Neutral sphingomyelinase (NSMase), acid ceramidase (ACDase) and glucosyl ceramide synthase (GCS) are the main enzymes in ceramide metabolism. Silymarin flavonolignans are potent apoptosis inducers and silibinin is the most active com...

متن کامل

New Aspects of Silibinin Stereoisomers and their 3-O-galloyl Derivatives on Cytotoxicity and Ceramide Metabolism in Hep G2 hepatocarcinoma Cell Line

Ceramide as a second messenger is a key regulator in apoptosis and cytotoxicity. Ceramide-metabolizing enzymes are ideal target in cancer chemo-preventive studies. Neutral sphingomyelinase (NSMase), acid ceramidase (ACDase) and glucosyl ceramide synthase (GCS) are the main enzymes in ceramide metabolism. Silymarin flavonolignans are potent apoptosis inducers and silibinin is the most active com...

متن کامل

Anti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice.

Radiation gastrointestinal (GI) syndrome is a major lethal toxicity that may occur after a radiation/nuclear incident. Currently, there are no prophylactic countermeasures against radiation GI syndrome lethality for first responders, military personnel, or remediation workers entering a contaminated area. The pathophysiology of this syndrome requires depletion of stem cell clonogens (SCCs) with...

متن کامل

PUMA regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome.

Radiation is one of the most effective cancer treatments. However, gastrointestinal (GI) syndrome is a major limiting factor in abdominal and pelvic radiotherapy. The loss of crypt stem cells or villus endothelial cells has been suggested to be responsible for radiation-induced intestinal damage. We report here a critical role of the BH3-only protein p53 upregulated modulator of apoptosis (PUMA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 70 3  شماره 

صفحات  -

تاریخ انتشار 2010